
Package: speakeasyR (via r-universe)
September 18, 2024

Title Fast and Robust Multi-Scale Graph Clustering

Version 0.1.3

Description A graph community detection algorithm that aims to be
performant on large graphs and robust, returning consistent
results across runs. SpeakEasy 2 (SE2), the underlying
algorithm, is described in Chris Gaiteri, David R. Connell &
Faraz A. Sultan et al. (2023) <doi:10.1186/s13059-023-03062-0>.
The core algorithm is written in 'C', providing speed and
keeping the memory requirements low. This implementation can
take advantage of multiple computing cores without increasing
memory usage. SE2 can detect community structure across scales,
making it a good choice for biological data, which often has
hierarchical structure. Graphs can be passed to the algorithm
as adjacency matrices using base 'R' matrices, the 'Matrix'
library, 'igraph' graphs, or any data that can be coerced into
a matrix.

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Imports Matrix, methods

Suggests igraph, scRNAseq, SummarizedExperiment, knitr, rmarkdown,
testthat (>= 3.0.0)

URL https://github.com/SpeakEasy-2/speakeasyR

BugReports https://github.com/SpeakEasy-2/speakeasyR/issues

VignetteBuilder knitr

Config/testthat/edition 3

SystemRequirements arpack (optional)

Repository https://speakeasy-2.r-universe.dev

RemoteUrl https://github.com/speakeasy-2/speakeasyr

RemoteRef HEAD

RemoteSha 79faabcef450780e3e69fc30e8ff2212c5b34286

1

https://doi.org/10.1186/s13059-023-03062-0
https://github.com/SpeakEasy-2/speakeasyR
https://github.com/SpeakEasy-2/speakeasyR/issues

2 cluster

Contents
cluster . 2
knn_graph . 3
order_nodes . 4

Index 6

cluster SpeakEasy 2 community detection

Description

Group nodes into communities.

Usage

cluster(
graph,
discard_transient = 3,
independent_runs = 10,
max_threads = 0,
seed = 0,
target_clusters = 0,
target_partitions = 5,
subcluster = 1,
min_clust = 5,
verbose = FALSE,
is_directed = "detect"

)

Arguments

graph A graph or adjacency matrix in a form that can be converted to matrix or
Matrix::dgCMatrix using an as.matrix() coercion method. Accepted types
include matrix, dgCMatrix, ngCMatrix, and igraph::graphs.

discard_transient

The number of partitions to discard before tracking.
independent_runs

How many runs SpeakEasy2 should perform.

max_threads The maximum number of threads to use. By default this is the same as the
number of independent runs. If max_threads is greater than or equal to the
number of processing cores, all cores may run. If max_threads is less than the
number of cores, at most max_threads cores will run.

seed Random seed to use for reproducible results. SpeakEasy2 uses a different ran-
dom number generator than R, but if the seed is not explicitly set, R’s random
number generator is used create one. Because of this, setting R’s RNG will also
cause reproducible results.

knn_graph 3

target_clusters

The number of random initial labels to use.
target_partitions

Number of partitions to find per independent run.
subcluster Depth of clustering. If greater than 1, perform recursive clustering.
min_clust Smallest clusters to recursively cluster. If subcluster not set to a value greater

than 1, this has no effect.
verbose Whether to provide additional information about the clustering or not.
is_directed Whether the graph should be treated as directed or not. By default, if the graph

is symmetric it is treated as undirected.

Value

A membership vector. If subclustering, returns a matrix with number of rows equal to the number
of recursive clustering. Each row is the membership at different hierarchical scales, such that the
last rows are the highest resolution.

Examples

if (require("igraph")) {
graph <- igraph::graph.famous("zachary")
membership <- cluster(graph, max_threads = 2)

}

knn_graph K-nearest neighbors graph

Description

Create a directed sparse graph with edges to each nodes k nearest neighbors. Nearness is calculated
as the inverse of the euclidean distance between two columns.

Usage

knn_graph(mat, k, weighted = FALSE)

Arguments

mat A matrix to be compared column-by-column.
k How many nearest neighbors to collect.
weighted By default, a binary edge is made between a node and each of it’s k closest

nodes. Set weighted to TRUE to weigh each edge by the similarity (inverse of
euclidean distance).

Value

A directed sparse adjacency matrix with k * ncol(mat) nonzero edges. Each column has k edges
connected to the k closest columns (not including itself).

4 order_nodes

Examples

Simple random graph
mat <- matrix(runif(100) > 0.75, nrow = 5)
knn_graph(mat, 3)

Don't run because loading data is slow.

if (requireNamespace("scRNAseq") &&
requireNamespace("SummarizedExperiment")) {
Single Cell RNA data
library(Matrix)

expression <- scRNAseq::FletcherOlfactoryData()
cell_types <- expression$cluster_id

Filter genes with low expression. Remove any genes with less than 10
cells with with any reads.
counts <- SummarizedExperiment::assay(expression, "counts")
indices <- rowSums(counts > 0) > 10
counts <- counts[indices,]

Normalize by shifted logarithm
target <- median(colSums(counts))
size_factors <- colSums(counts) / target
counts_norm <- log(t(t(counts) / size_factors + 1))

Dimension reduction
counts_norm <- t(prcomp(t(counts_norm), scale. = FALSE)$x)[1:50,]

adj <- knn_graph(counts_norm, 10)
}

order_nodes Group nodes by community

Description

Reorders the graph to group nodes in the same community together. Useful for viewing community
structure of a graph using a heatmap().

Usage

order_nodes(graph, membership, is_directed = "detect")

Arguments

graph The graph or adjacency matrix the membership vector was created for.

order_nodes 5

membership A vector or matrix listing node communities. The output from cluster()
(should also work for other clustering algorithms that return membership in the
same format).

is_directed Whether the graph should be treated as directed or not. By default, if the graph
is symmetric it is treated as undirected.

Details

Communities are ordered by size, so nodes in the largest community are first. Within a community,
nodes are order by highest-to-lowest degree.

If membership is in matrix form (the output from cluster() with subcluster > 1) a matrix is
returned with the indices for level one in row 1 and level n in row n. Each row reorders the com-
munities of the previous row such that, at the second level, nodes are still grouped by the first level
communities. This allows the hierarchical structure to be viewed.

See vignette for a multilevel example.

Value

An index vector or matrix. The number of rows are equal to the value of subcluster passed to
cluster().

Examples

if (require("igraph")) {
n_nodes <- 100
n_types <- 3
Mixing parameter (likelihood an edge is between communities).
mu <- 0.3
pref <- matrix(mu, n_types, n_types)
diag(pref) <- 1 - mu
g <- igraph::sample_pref(n_nodes, types = n_types, pref.matrix = pref)
Use a dense matrix representation to easily apply index.
adj <- as(g[], "matrix")
memb <- speakeasyR::cluster(adj, seed = 222, max_threads = 2)
ordering <- speakeasyR::order_nodes(adj, memb)

heatmap(adj[ordering, ordering], scale = "none", Rowv = NA, Colv = NA)

}

Index

cluster, 2
cluster(), 5

knn_graph, 3

order_nodes, 4

6

	cluster
	knn_graph
	order_nodes
	Index

